Parent class for cirq.DensePauliString
and cirq.MutableDensePauliString
.
Inherits From: Gate
cirq.BaseDensePauliString(
pauli_mask: Union[Iterable['cirq.PAULI_GATE_LIKE'], np.ndarray],
*,
coefficient: 'cirq.TParamValComplex' = 1
)
cirq.BaseDensePauliString
is an abstract base class, which is used to implement
cirq.DensePauliString
and cirq.MutableDensePauliString
. The non-mutable version
is used as the corresponding gate for cirq.PauliString
operation and the mutable
version is mainly used for efficiently manipulating dense pauli strings.
See the docstrings of cirq.DensePauliString
and cirq.MutableDensePauliString
for more
details.
Examples:
print(cirq.DensePauliString('XXIY'))
+XXIY
print(cirq.MutableDensePauliString('IZII', coefficient=-1))
-IZII (mutable)
print(cirq.DensePauliString([0, 1, 2, 3],
coefficient=sympy.Symbol('t')))
t*IXYZ
Args |
pauli_mask
|
A specification of the Pauli gates to use. This argument
can be a string like "IXYYZ", or a numeric list like
[0, 1, 3, 2] with I=0, X=1, Y=2, Z=3=X|Y.
The internal representation is a 1-dimensional uint8 numpy array
containing numeric values. If such a numpy array is given, and
the pauli string is mutable, the argument will be used directly
instead of being copied.
|
coefficient
|
A complex number. Usually +1, -1, 1j, or -1j but other
values are supported.
|
Attributes |
coefficient
|
A complex coefficient or symbol.
|
pauli_mask
|
A 1-dimensional uint8 numpy array giving a specification of Pauli gates to use.
|
Methods
controlled
View source
controlled(
num_controls: Optional[int] = None,
control_values: Optional[Union[cv.AbstractControlValues, Sequence[Union[int, Collection[int]]]]
] = None,
control_qid_shape: Optional[Tuple[int, ...]] = None
) -> 'Gate'
Returns a controlled version of this gate.
If no arguments are
specified, defaults to a single qubit control.
Args |
num_controls
|
Total number of control qubits.
|
control_values
|
Which control computational basis state to apply the
sub gate. A sequence of length num_controls where each
entry is an integer (or set of integers) corresponding to the
computational basis state (or set of possible values) where that
control is enabled. When all controls are enabled, the sub gate is
applied. If unspecified, control values default to 1.
|
control_qid_shape
|
The qid shape of the controls. A tuple of the
expected dimension of each control qid. Defaults to
(2,) * num_controls . Specify this argument when using qudits.
|
Returns |
A cirq.Gate representing self controlled by the given control values
and qubits. This is a cirq.ControlledGate in the base
implementation, but subclasses may return a different gate type.
|
copy
View source
@abc.abstractmethod
copy(
coefficient: Optional[Union[sympy.Expr, int, float, complex]] = None,
pauli_mask: Union[None, str, Iterable[int], np.ndarray] = None
) -> Self
Returns a copy with possibly modified contents.
Args |
coefficient
|
The new coefficient value. If not specified, defaults
to the current coefficient value.
|
pauli_mask
|
The new pauli_mask value. If not specified, defaults
to the current pauli mask value.
|
Returns |
A copied instance.
|
eye
View source
@classmethod
eye(
length: int
) -> Self
Creates a dense pauli string containing only identity gates.
Args |
length
|
The length of the dense pauli string.
|
frozen
View source
frozen() -> 'DensePauliString'
A cirq.DensePauliString
with the same contents.
mutable_copy
View source
mutable_copy() -> 'MutableDensePauliString'
A cirq.MutableDensePauliString
with the same contents.
num_qubits
View source
num_qubits() -> int
The number of qubits this gate acts on.
on
View source
on(
*qubits
) -> 'cirq.PauliString'
Returns an application of this gate to the given qubits.
Args |
*qubits
|
The collection of qubits to potentially apply the gate to.
|
Returns: a cirq.Operation
which is this gate applied to the given
qubits.
on_each
View source
on_each(
*targets
) -> List['cirq.Operation']
Returns a list of operations applying the gate to all targets.
Args |
*targets
|
The qubits to apply this gate to. For single-qubit gates
this can be provided as varargs or a combination of nested
iterables. For multi-qubit gates this must be provided as an
Iterable[Sequence[Qid]] , where each sequence has num_qubits
qubits.
|
Returns |
Operations applying this gate to the target qubits.
|
Raises |
ValueError
|
If targets are not instances of Qid or Iterable[Qid].
If the gate qubit number is incompatible.
|
TypeError
|
If a single target is supplied and it is not iterable.
|
one_hot
View source
@classmethod
one_hot(
*, index: int, length: int, pauli: 'cirq.PAULI_GATE_LIKE'
) -> Self
Creates a dense pauli string with only one non-identity Pauli.
Args |
index
|
The index of the Pauli that is not an identity.
|
length
|
The total length of the string to create.
|
pauli
|
The pauli gate to put at the hot index. Can be set to either
a string ('X', 'Y', 'Z', 'I'), a cirq gate (cirq.X ,
cirq.Y , cirq.Z , or cirq.I ), or an integer (0=I, 1=X, 2=Y,
3=Z).
|
sparse
View source
sparse(
qubits: Optional[Sequence['cirq.Qid']] = None
) -> 'cirq.PauliString'
A cirq.PauliString
version of this dense pauli string.
Args |
qubits
|
The qubits to apply the Paulis to. Defaults to
cirq.LineQubit.range(len(self)) .
|
Returns |
A cirq.PauliString with the non-identity operations from
this dense pauli string applied to appropriate qubits.
|
Raises |
ValueError
|
If the number of qubits supplied does not match that of
this instance.
|
tensor_product
View source
tensor_product(
other: 'BaseDensePauliString'
) -> Self
Concatenates dense pauli strings and multiplies their coefficients.
Args |
other
|
The dense pauli string to place after the end of this one.
|
Returns |
A dense pauli string with the concatenation of the paulis from the
two input pauli strings, and the product of their coefficients.
|
validate_args
View source
validate_args(
qubits: Sequence['cirq.Qid']
) -> None
Checks if this gate can be applied to the given qubits.
By default checks that:
- inputs are of type
Qid
- len(qubits) == num_qubits()
- qubit_i.dimension == qid_shape[i] for all qubits
Child classes can override. The child implementation should call
super().validate_args(qubits)
then do custom checks.
Args |
qubits
|
The sequence of qubits to potentially apply the gate to.
|
Raises |
ValueError
|
The gate can't be applied to the qubits.
|
with_probability
View source
with_probability(
probability: 'cirq.TParamVal'
) -> 'cirq.Gate'
Creates a probabilistic channel with this gate.
Args |
probability
|
floating point value between 0 and 1, giving the
probability this gate is applied.
|
Returns |
cirq.RandomGateChannel that applies self with probability
probability and the identity with probability 1-p .
|
wrap_in_linear_combination
View source
wrap_in_linear_combination(
coefficient: Union[complex, float, int] = 1
) -> 'cirq.LinearCombinationOfGates'
Returns a LinearCombinationOfGates with this gate.
__abs__
View source
__abs__() -> Self
__add__
View source
__add__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> 'cirq.LinearCombinationOfGates'
__call__
View source
__call__(
*qubits, **kwargs
)
Call self as a function.
__eq__
View source
__eq__(
other: _SupportsValueEquality
) -> bool
__getitem__
View source
__getitem__(
item
)
__iter__
View source
__iter__() -> Iterator[Union['cirq.Pauli', 'cirq.IdentityGate']]
__len__
View source
__len__() -> int
__mul__
View source
__mul__(
other
)
__ne__
View source
__ne__(
other: _SupportsValueEquality
) -> bool
__neg__
View source
__neg__()
__pos__
View source
__pos__()
__pow__
View source
__pow__(
power: Union[int, float]
) -> Union[NotImplementedType, Self]
__rmul__
View source
__rmul__(
other
)
__sub__
View source
__sub__(
other: Union['Gate', 'cirq.LinearCombinationOfGates']
) -> 'cirq.LinearCombinationOfGates'
__truediv__
View source
__truediv__(
other
)
Class Variables |
I_VAL
|
0
|
X_VAL
|
1
|
Y_VAL
|
2
|
Z_VAL
|
3
|